11 Ekim 2017 Çarşamba

Sayma Becerilerinin Öğretimi


Sayma Becerilerinin Öğretimi

Serpil Alptekin*

Ondokuz Mayıs Üniversitesi


Öz
Sayma, sayı sözcüklerini doğru sırada söylemeyi, tek grup nesneyi sayarken her nesne ile bir sayı sözcüğünü eşlemeyi ve her bir nesneyi bir kez saymayı gerektiren, belli bir sıra içeren önemli bir matematik becerisidir. Öğrencilerin çoğu, sayma becerilerini günlük yaşamdaki deneyimleri, kitaplar veya tekerlemeler aracılığıyla ya da ebeveynlerini taklit ederek informal yollarla öğrenirler. Ancak matematik performansı düşük olan öğrenciler, sayma becerilerini kazanmak için daha fazla ipucu, yapılandırılmış öğretim uygulamaları ve daha fazla alıştırma yapmaya gereksinim duyarlar. Bu nedenle matematik performansı düşük olan öğrencilere, günlük yaşamda sık sık kullanılan ileri matematik becerilerinin kazanılması için gerekli olan sayma becerilerini, ipuçlarının doğrudan sunulduğu açık anlatım yöntemleri ile başarılı yaşantılar sağlanarak ve beceride ustalaşmayı sağlayacak sayıda tekrar alıştırmalarına yer vererek kazandırmak gerekmektedir. Bu makalenin amacı, sayma becerilerini açıklamak ve matematik performansı düşük olan öğrencilere bu beceriler kazandırılırken, öğretmenlerin uygulayacakları stratejilere ve dikkat etmesi gereken noktalara ilişkin önerilerde bulunmaktır


Sayma, sayı sözcüklerini doğru sırada söylemeyi, tek grup nesneyi sayarken her nesne ile bir sayı sözcüğünü eşlemeyi ve her bir nesneyi bir kez saymayı gerektiren, belli bir sıra içeren önemli bir matematik becerisidir (Baroody, 1986; Bruce ve Threlfall, 2004; Butterworth, 2005; Sarnecka ve Karey, 2008; Wyn, 1992). Çocuklar, iki yaş civarında konuşmanın başlamasıyla birlikte sayı sözcüklerini de kullanmaya başlarlar ve bunlar çocuğun matematikle ilgili ilk deneyimleridir (Barody ve Price, 1983; Butterworth, 2005; Fuson, 1988). Ancak çocukların sayma sözcüklerini bilmeleri, anlamlı sayma ya da bu sözcüklerin neyi ifade ettiğini bildikleri anlamına gelmez (Bermejo, Moroles ve deOsuna, 2004; Bruce ve Threlfall, 2004). Nitekim Sarnecka ve Karey (2008), saymanın bir nesne grubunda ne kadar nesne bulunduğunu belirlemek gibi bir işlevi olduğuna vurgu yapmışlardır. Ayrıca 10’a kadar ezbere saymanın alfabeyi ezbere söylemekten farkının, çocuğun bir  grup nesneyi sayarak, grupta kaç tane nesne olduğunu söylemesi olarak belirtmişlerdir. Gelman ve Gallister (1978) ise, sayma becerilerinin anlamlı ve doğru bir şekilde öğrencilere kazandırılması için sayma ilkelerine uygun planlama yapılması gerektiğini belirtmişlerdir. Bu ilkeler:
Düzenli sayma ya da değişmez sıra ilkesi: Sayı sözcüklerinin her zaman aynı sırada olması (Bir çocuğun 7 tane boncuğu sayması istendiğinde, “bir, iki, üç, dört, beş, altı, yedi” diyerek sıralı bir şekilde sayması) .
Birebir eşleme ilkesi: Bir grup nesne sayılırken, her bir nesnenin sadece bir sayı sözcüğü ile eşlenmesi (Çocuğun 7 tane boncuğu sayarken her boncuğa karşılık bir sayı sözcüğünü söylemesi).
Kardinal değer ilkesi: Bir gruptaki nesneleri sayarken, en son sayılan nesne için söylenen sayının gruptaki nesne sayısını göstermesi (Çocuğun 7 tane boncuğu sayması ve son söylediği sayı sözcüğünün (yedi) gruptaki boncuk sayısının toplam değeri olduğunun farkında olması).
Soyutlama ilkesi: Saymanın bütün varlık gruplarına uygulanabilmesi (Çocuğun boncuk, düğme gibi nesneleri; araba, kuş gibi resimleri; sıra, masa gibi eşyaları ve el çırpma, göz kırpma gibi vücut hareketlerini, etrafındaki birçok varlık grubunu sayabiliyor olması).
Sıra-Bağımsızlık ilkesi: Saymada nesnelerin sıralanışının önemsiz olması (Çocuğun 7 boncuğu sayarken, sayma işlemine hangi boncuktan başlarsa başlasın sayma sonucunun yine yedi olması).
Bu ilkelerden düzenli sayma, birebir eşleme ve kardinal değer ilkesi; saymayla ilgili işlemsel bilgileri ve kuralları ifade etmekte, çocukların sayma becerilerinin gelişimini önemli ölçüde şekillendirmektedir (Gelman ve Gallister, 1978). Birebir eşleme ve düzenli sayma ilkesi saymanın doğru ve anlamlı bir şekilde yapılmasını sağlarken, kardinal değer ilkesi sayılan varlıkların niceliğinin ya da çokluğunun anlaşılmasını sağlar (Olkun, Fidan ve Özer, 2013).
Sayma becerileri, ileri matematik becerilerinin öğretimi için ön koşul olma özelliği göstermektedir (Charlesworth, 2012; Stein, Silbert ve Carnine, 1997). Örneğin, nesneleri sayma, birden başlayarak sayma ve herhangi bir sayıdan başlayarak sayma toplama için ön koşulken, herhangi bir sayıdan başlayarak geri sayma çıkarmanın ön koşuludur. Atlayarak sayma ise çarpma, bölme ve daha karmaşık bir matematik becerisi olan saat okuma becerisi için ön koşul olma özelliğindedir (Stein vd., 1997). Bu nedenle, matematiğin temeli olarak görülen sayma becerilerinin kazanılması, çocukların ileriki dönemlerde öğrenecekleri matematik becerilerini geliştirmelerinde büyük öneme sahiptir.
Literatürde matematik performansı düşük olan öğrencilerin sayma becerilerindeki düzeyini belirlemeye yönelik olarak birçok araştırma bulunmaktadır. Baroody ve Snyder (1983), orta düzeydeki zihinsel yetersizliği olan çocukların temel sayma ilkelerini anlamadıklarını ancak mekanik saymayı başarabildiklerini belirtmişlerdir. Ayrıca Gelman ve Cohen (1988: Akt. Bashash, Outhred ve Bochner, 2003), Down sendromlu çocuklarla,  normal çocukları karşılaştırdığı bir başka araştırmada ise normal çocukların 4-5 yaşlarında sergiledikleri sayma becerilerini, Down sendromlu çocukların 10-12 yaşlarında sergileyebildikleri ve sayma ilkelerini ihlal ettikleri belirtilmiştir. Geary, Bow-Thomas ve Yao (1992) ise, matematikte öğrenme güçlüğü gösteren çocukların çoğunun, ileri ya da geri saymayı doğru yaptıkları fakat sayma ilkelerini anlamadıklarını ve zaman zaman hatalar yaptıklarını belirtmişlerdir.






23 Down sendromlu ve 20 normal gelişim gösteren çocuğun sayma becerilerinin karşılaştırıldığı bir başka araştırmada, Down sendromlu çocukların normal çocuklara göre sıralı saymayı daha az yaptıkları (normal çocuklar yüze kadar sayabilirken, onların 25, 50’ye kadar sayması gibi), nesneleri saymak için daha uzun süre ayırdıkları ve sayma oturumlarında daha fazla hata yaptıkları belirlenmiştir (Nye, Fluck ve Buckley, 2001). Basnash vd. (2003)’nin 30 orta düzeyde zihinsel yetersizliği olan çocukla yaptıkları araştırmada, küçük orta ve büyük yaşta olmak üzere üç grup oluşturulmuştur. Çocuklardan yedisi 20’ye kadar, yirmisi 50’ye kadar, üçü ise 100’e kadar mekanik sayma yapmışlardır. Yine aynı araştırmada küçük yaştaki çocukların bulunduğu grupta, sadece bir çocuk ondan fazla nesneyi sayabilirken, orta ve büyük yaşta çocukların olduğu diğer iki grupta çocukların hepsi ondan fazla nesneyi saymıştır. Küçük ve orta gruptaki çocuklar nesneleri sayarken üç tür hata yapmıştır: Nesneleri atlama, aynı nesneyi birden fazla sayma, nesnelere dokunma ancak dokunduğunda sayı sözcüğü söylemeden diğer nesneye geçme. Küçük ve orta yaş grubunda olan çocuklar nesneleri sayarken dokunma, büyük çocuklar ise gözle takip etme stratejileri kullanmışlardır.
İncelenen bu araştırmalarda, normal gelişim gösteren çocukların günlük yaşamdaki deneyimleri, kitaplar ve tekerlemeler aracılığıyla ya da ebeveynlerini taklit ederek informal yollarla öğrendikleri (Bashash vd., 2003; Charlesworth ve Lind, 2013; Wyn, 1992) sayma becerilerini, matematik performansı düşük olan çocukların kendiliğinden informal yollarla öğrenemedikleri ve bazı hatalar yaptıkları görülmektedir. Matematik performansı düşük olan öğrencilere sayma becerilerinin kazandırılmasına ilişkin farklı yöntemlerin kullanıldığı pek çok araştırmaya rastlamak mümkündür. Baroody ve Ginsburg (1984)’un eğitilebilir ve öğretilebilir zihinsel yetersizliği olan çocuklarla, okul programının (Bireyselleştirlmiş Eğitim Programı) içinde sayma becerilerinin (ezbere sayma, onarlı sayma, nesne sayma vb.) öğretimini yapmışlardır. Sonucunda özellikle öğretilebilir zihinsel yetersizliği olan çocuklar ile ezbere sayma öğretimi için kısa süreli ve sık aralıklı bireysel derslerin daha etkili olduğunu belirtmişlerdir. Murphy, Bates ve Anderson (1984), okul öncesi eğitime devam eden yetersizliği olan öğrencilere sayma becerilerinin öğretiminde kendine yönerge vermenin etkisini incelemişler ve çalıştıkları dokuz öğrenciden sekizinde sayma becerilerinin önemli ölçüde arttığını ve öğrencilerin altı ay sonra da bu becerileri sürdürdüklerini belirlemişlerdir. Matematik performansı düşük olan altı öğrenciyle yapılan bir başka araştırmada, öğrenciler altı ay boyunca haftada üç kez, 25’er dakika süren öğretim oturumlarına katılmışlardır. Öğrenciler, sayma becerileri, semboller, toplama, çıkarma ve basamak değerini manipülatif (boncuk, sayma çubuğu, onluk taban blokları vb.) araçların kullanıldığı açık anlatım yöntemi (explicit teaching) ile öğrenmişlerdir (Kaufman, Handl ve Thony, 2003).
Daugherty, Grisham-Brown ve Hemmeter (2001), doğal öğretim yöntemlerinden biri olan gömülü öğretimin, öğrencilerin nesne sayma becerisini kazanmasına olan etkisini araştırmışlardır. Kaynaştırma programına devam eden dil ve konuşma yetersizliği olan üç öğrenciyle, sınıf aktiviteleri ve rutinlere gömülerek, bekleme süreli öğretim denemeleri gerçekleştirilmiş ve bu denemelerde öğrencilere model olunmuştur. Öğrenciler doğru tepkide bulunana kadar denemeler devam etmiştir. Bunun sonucunda, öğrencilerin hedeflenen nesne sayma becerisini ve hedeflenmeyen renkleri ayırt etme becerilerini kazanmalarında gömülü öğretimin etkili olduğunu belirlemişlerdir. Yapılan başka bir meta analiz çalışmasında ise, matematik performansı düşük olan öğrenciler için sistematik ipuçlarının verildiği öğretim yöntemlerinin yararlı olduğuna vurgu yapılmıştır. Yine aynı araştırmada açık anlatım, doğal öğretim yöntemleri ve öğretmenin doğrudan bilgi paylaştığı müdahalelerin yetersizliği olan çocuklar için daha etkili olduğu sonucuna ulaşılmıştır (Kroesbergen ve Van Luit, 2003).
Browder, Spooner, Ahlgrim-Delzell, Wakeman ve Harris (2008), önemli ölçüde zihinsel yetersizliği olan (significant cognitive disabilities) çocuklara, matematik becerilerinin öğretildiği 68 deneysel çalışmayı (çalışmaların %93’ü sayılar ve işlem yapma becerileri ile ilgilidir) analiz etmişlerdir. Bu çalışmalarda 493 gelişimsel yetersizliği olan çocuğun bazı temel matematik becerilerini kanıta dayalı, sistematik ipuçlarının kullanıldığı doğrudan öğretim yöntemleri ile kazandıkları belirlenmiştir. Ayrıca yapılan meta analiz sonucunda, gelişimsel yetersizliği olan çocukların edindikleri matematik becerilerinin sürekliliğini sağlamak için kısa süreli öğretim oturumları ile çok sayıda alıştırma yapmaya gereksinim duyduklarına vurgu yapılmıştır. Kahyaoğlu






(2010), zihinsel yetersizliği olan çocuklara, 2’ şerli ve 3’ erli atlayarak sayma becerilerini kazandırmada doğrudan öğretim yönteminin etkisini araştırmış ve öğrencilere önce saymaya model olmuş, daha sonra rehberli uygulamalara geçerek, ipuçlarını yavaş yavaş geri çekmiş ve bağımsızlık oturumlarına yer vermiştir. Sonucunda, doğrudan öğretim yönteminin zihinsel yetersizliği olan öğrencilere sayma becerilerini kazandırmada etkili olduğunu belirlemiştir.
Browder vd. (2012), orta ve ağır derecede gelişimsel yetersizliği olan öğrencilere matematik becerilerini kazandırmak için kavramsal bir model geliştirmişlerdir. Bu model: a) erken matematik becerilerini belirleme b) sistematik ipuçları ve dönütler kullanma c) günlük derslerde öykülere dayalı öğretim yapma d) genellemeyi sağlamak için gömülü öğretim yapmadan oluşmaktadır. Araştırmada, üç ilkokul öğretmeni bu kavramsal modeli uygulamışlardır. Öğrencilerin matematik becerilerindeki performansları (5 taneden oluşan nesne gruplarını sayma, 10’a kadar ezbere sayma vb.), yapılan sistematik ipuçları ve dönütlerin kullanıldığı öyküye dayalı öğretimler sonucunda artmıştır. Ayrıca genelleme için yapılan gömülü öğretimlerle, öğrencilerin eğitim ortamlarında bu becerileri daha fazla sergiledikleri gözlenmiştir. Mononen, Aunio, Koponen ve Aro (2014), matematik performansı düşük olan 4 ile 7 yaş arasındaki çocuklarla yapılan erken sayı öğretimi ile ilgili çalışmaları gözden geçirmişlerdir. Sonucunda erken sayı öğretimi ile ilgili yapılan çalışmaların daha çok “açık anlatım, bilgisayar destekli eğitim, oyuna dayalı öğretim ve somut sunumlara dayalı öğretimler üzerinde odaklandığına vurgu yapmış ve bu uygulamaların etkili olduğunu belirtmişlerdir.
Araştırmalarda da görüldüğü gibi farklı yetersizlik gruplarında yer alan (öğrenme güçlüğü, zihinsel yetersizlik, gelişimsel gerilik, dil ve konuşma yetersizliği gibi…) matematik performansı düşük olan öğrencilerin, daha fazla ipucunun sunulduğu ve daha fazla alıştırma yapmaya imkân sunan yapılandırılmış öğretim uygulamaları ile sayma becerilerini kazanabildikleri düşünülebilir. O halde matematik performansı düşük olan öğrencilere, günlük yaşamda sık sık kullanılan ileri matematik becerilerinin kazanılması için gerekli olan sayma becerilerinin kazandırılması oldukça önemlidir. Bu nedenle makalenin amacı, sayma becerilerini açıklamak ve matematik performansı düşük olan öğrencilere bu beceriler kazandırılırken, öğretmenlerin uygulayacakları stratejilere ve dikkat etmesi gereken noktalara ilişkin önerilerde bulunmaktır.

Sayma Becerileri

Sayı kavramının, tam anlamıyla öğrencilerde edinilmesiyle ilgili olarak düşünülmesi gereken ezbere sayma, rasyonel sayma (nesne sayma), sıralı sayma ve atlayarak sayma olmak üzere dört tip sayma becerisi vardır. Ezbere sayma, sayıların zincir halinde sıralanması; nesne sayma, bir grup içerisindeki nesnelere dokunularak grup içindeki nesne sayısının belirlenmesi; sıralı sayma, sıra sayılarının söylenmesi (birinci, ikinci…); atlayarak sayma ise belirli bir sayının katlarının söylenmesi anlamına gelmektedir (Hudson ve Miller, 2006; Stein vd., 1997).

Ezbere Sayma

Ezbere sayma, sayı zincirlerinin bir dizi halinde bellekten söylenmesi anlamına gelir ve mekaniktir (Pesen, 2008; Stein vd., 1997). Öğrenciye “birden başlayarak say” denildiğinde “bir, iki, üç, dört…” şeklinde sayması ezbere saymadır. Ezbere sayma, en kolay sayma becerisidir ve diğer sayma becerilerinin öğrenilmesi için önemli bir temel oluşturur (Charlesworth ve Lind, 2013; Hudson ve Miller, 2006).
Ezbere sayma öğretimi, ilk olarak 1’den başlayıp ileri doğru saymayı içerir (Hudson ve Miller, 2006). Öğrencilere birinci basamakta, 99’a kadar (onlarda) sayma; ikinci basamakta 999’a kadar (yüzlerde) sayma; üçüncü basamakta ise 999.999’a kadar (binlerde) sayma öğretilmelidir (Stein vd., 1997).
Öğretmen, sınıftaki her bir öğrencinin en fazla kaça kadar sayabileceğini belirleyerek öğretime başlamalıdır. Sınıftaki en düşük sayan öğrencinin performansıyla başlayıp, en yüksek sayan öğrencinin performansından iki sayı fazlasını sayma serisi olarak belirlemelidir (Hudson ve Miller, 2006). Örneğin, Ali 8, Ayşe 5, Fırat 6, Ömer 7’ye kadar sayıyorsa seri 5 ile başlayıp 10 ile bitmelidir.
Eğer öğretmen, öğrenciye 1 ile 10 arasındaki sayıları saymayı öğretiyorsa, seriyi bir defada değil ikiye bölerek öğretmelidir (Birinci Seri: 1, 2, 3, 4, 5; İkinci Seri: 6, 7, 8, 9, 10). Hatta öğrencinin başarısı çok düşükse üçe de bölerek öğretebilir. Öğretmen, öğrenciler ilk seriyi hatasız yapar hale geldiğinde, yeni serinin öğretimine geçmeli ve yeni serideki ilk sayıya vurgu yaparak model olmalıdır. Daha sonra mutlaka serilerin bütünleştirilmesi için ayrı öğretim oturumları düzenlenmelidir (Stein vd., 1997).
Ezbere sayma öğretim oturumları, uzun süreli yapıldığında öğrencinin temposunu düşürür ve yanlış tepki verme ihtimali yükselir. Bu nedenle öğretim oturumları kısa olmalı ve sık aralıklarla tekrarlanmalıdır (Charlesworth ve Lind, 2013). Öğretmen, öğrencilerin sayma ile ilgili çalışmalarını, öğrenciler yemeğe gitmeden önce sıraya girdiğinde, sabahları ilk alıştırma olarak ya da dersin son beş dakikasında yapabilir. Ayrıca öğretmen sayma alıştırmalarını tekerlemeler, şarkılar ve oyunlarla zevkli hale dönüştürebilir (Charlesworth ve Lind, 2013; Stein vd., 1997).
Hızlı sayma, öğrencilerin dikkatini toplamasını ve saymayı daha kolay öğrenmesini sağlayabilir. Bu nedenle öğretmen, hızlı saymaya model olmalıdır. Öğretmen öğrencilerine model olmak için sayarken sayıların arasında 1 saniyeden fazla boşluk bırakmamalıdır. Eğer çok fazla bekleyerek sayarsa, düşük başarı gösteren öğrenciler başta duydukları sayıları unutabilirler. Hızlı sayma, düşük performanslı öğrenciler için daha zor olabilir ve daha fazla alıştırma gerektirebilir (Stein vd., 1997).
Öğrenciler, öğretmen kontrollü sayma alıştırmaları sırasında çeşitli hatalar yapabilir. İki sayının yerini değiştirebilir (1, 2, 3, 5, 4, 6…) ya da bir sayıyı atlayarak sayabilir (1, 3, 4, 5…) (Frye vd., 2013). Bu hataların
öğretim sırasında düzeltilmesi oldukça önemlidir. Öğrenci, “1 2 3 5 4 6”  biçiminde  saymışsa,  öğretmen öğrenci saymaya devam ederken “dört” derse, öğrenci bunu “1 2 3 5 4 6” biçiminde duyar. Bu tür hataları düzeltmek için öğretmen öğrenciyi durdurmalı, iki sayı yanlış söylenen kısımdan önce başlayarak, atlanan sayıdan bir sonraki sayıya kadar sayarak öğrenciye model olmalı, rehberlik etmeli ve tekrar 1’den başlayarak saydırmalıdır (Stein vd., 1997).
Öğretmenlerin sayma öğretimi sırasında sıklıkla yaptıkları hata, öğrencinin duraksadığı kısımda, sayının ilk sesini fısıldayarak ya da sadece dudaklarını kımıldatarak ipucu vermektir. Bu tür ipuçlarının sistematik olarak geri çekimi oldukça zordur ve öğrenciler bağımsızlığa ulaşamazlar (Stein vd., 1997).
Öğrenciler, 1’den başka bir sayıyla başlayan ezbere sayma ve geriye doğru sayma uygulamalarına da ihtiyaç duyarlar. Böylece öğrenciler saymanın her zaman 1 ile başlamadığını saymanın ileri veya geriye doğru gidebileceğini öğrenirler. Verilen bir sayıdan ileri sayma toplama, geriye sayma ise çıkarma becerilerinin kazanımı için öğrencilerde bir temel sağlar (Hudson ve Miller, 2006; Reys, Lindquist, Lambdin, Smith ve Suydam; 2004).
Öğretmen, 1’den başka sayıdan başlayarak sayabilen ve 10’arlı sayabilen öğrencilerle büyük sayılarla sayma çalışmalarına başlamalıdır. Öğretmen 10-99 arasında büyük sayıların sayılmasıyla ilgili öğretim oturumlarında, yeni onluktan üç sayı öncesinden başlayıp, iki sayı sonrasına kadar sayarak model olmalıdır (47 48 49 50 51 52 gibi). 100-999 arasındaki sayıları sayma ise yüzerli bine kadar sayma ile başlamalıdır. Yüzerli sayma öğrenciler için çok kolaydır ve çok kısa sürede kazanılır. 100-999 arasında sayma, üç aşamada gerçekleştirilmelidir. Birinci aşamada, tek yüzlük içinde onluk saydırılmalıdır (720-721-722-723-724-725-726- 727-728-729 gibi). İkinci aşamada, yüzlük içinde bir onluktan diğer onluğa geçiş sağlanmalıdır. Bunun için 5 ile biten bir basamaktan başlayan ve 5 ile biten diğer basamağa kadar devam eden genişletilmiş pek çok seri saydırılmalıdır (325-326-327-328-329-330-331-332-333-335 gibi). Üçüncü aşamada ise bir yüzlükten diğer yüzlüğe geçiş üzerinde çalışılmalıdır. Bunun için ise sonu 95 ile biten yüzlük bir sayıdan başlayan ve yeni yüzlükte sonu 5 ile biten diğer basamağa kadar devam eden pek çok seri saydırılmalıdır (395-396-397-398-399- 400-401-402-403-404-405 gibi) (Stein vd., 1997).
Matematik performansı düşük olan öğrenciler için doğrudan öğretim modeli ve yanlışsız öğretim yöntemlerinden eş zamanlı ipucu ile sabit bekleme süreli öğretim, ezbere sayma becerilerinin öğretiminde kullanılabilir (Hudson ve Miller, 2006).


           Nesne Sayma (Rasyonel Sayma)

Nesne sayma, sayma sözcüklerini söylerken eş zamanlı olarak nesnelere dokunmayı gerektiren bir sayma becerisidir (Stein vd., 1997). Nesne saymada en önemli husus, sayılan her bir nesnenin bir sayı sözcüğüyle belirlenmesidir. Bu nedenle nesne saymada, Şekil 1’deki gibi her bir sayı sözcüğü ile her bir nesne arasında bir eşleme yapılmalıdır (Frye vd., 2013; Pesen, 2008). Aynı zamanda nesne saymanın, bir grupta sayılan nesnelerin kaç tane olduğunu belirleme gibi bir işlevi de vardır (Frye vd., 2013; Muldoon, Lewis ve Freeman, 2009; Sarnecka ve Karey, 2008).

Şekil 1. Nesne Sayma
Öğrenciler, 10’a kadar ezbere saymada ustalaştıkları zaman bir gruptaki nesneleri sayma öğretimine geçilmelidir (Hudson ve Miller, 2006). Nesne sayma öğretiminde, manipülatif araçlardan (boncuk, fasulye, çubuk gibi) ve resimler gibi somut materyallerden faydalanılır (Stein vd., 1997). Van Luit ve Schopman (2000)’da yaptıkları bir çalışmayla, somut materyaller kullanılarak açık anlatım yöntemleriyle sayma becerilerinin öğretildiği anaokulu öğrencilerinin, diğer öğrencilere göre sayıları anlama, karşılaştırma ve sayma ile ilgili konularda daha başarılı olduğunu belirlemişlerdir.
Nesne sayma alıştırmaları, öğretmenin bir gruptaki her bir nesneye dokunurken sayıları bir sıra halinde söylemeyi göstermesi ile başlamalı ve öğretmenin nesnelere dokunduğu ve öğrencilerle birlikte saydığı alıştırmalar ile devam etmelidir. Daha sonra öğrenciler nesnelere dokunarak, kendi başlarına saymalıdır (Hudson ve Miller, 2006). Kendi başına sayma alıştırmalarına geçerken öğretmen, öğrencilere “hazır ol” komutuyla birlikte el çırparak öğrencilerin saymaya başlamasını sağlayabilir. Öğretmen, her bir nesne arasında 1-1,5 saniye boşluk olacak şekilde el çırpmaya devam etmelidir. Öğrenci, el çırpmayı duyduğunda bir sonraki nesneye dokunmalıdır. Öğrencilerin kendi başlarına nesne saydıkları aşamada öğretmen, öğrenci performanslarını iyi gözlemelidir. Dokunarak sayma önemli olduğundan, öğretmenin öğrencileri sadece dinlemesi yeterli değildir. Öğrencilerin dokunarak doğru sayıp sayamadıklarını anlamak için öğretmen, öğrencilere çok sayıda alıştırma yaptırmalıdır (Stein vd., 1997).
Nesne sayma öğretim oturumlarında öğretmen, 1-5 arasındaki küçük nesne gruplarıyla alıştırmalara başlamalı, öğrenci ustalaştıktan sonra daha büyük nesne gruplarına geçmelidir (Frye vd., 2013).
Nesne sayma öğretim oturumları ezbere saymada olduğu gibi kısa olmalı ve öğrenciler hatasız yapıncaya kadar sık aralıklarla tekrarlanmalıdır ( Charlesworth ve Lind, 2013).
Manipülatif materyal kullanılarak başlayan nesne sayma öğretim oturumları, öğrenci saymada yeterlilik kazandıkça, nesne resimleriyle de kendi başına sayıncaya kadar devam etmelidir (Hudson ve Miller, 2006).
Öğrenciler nesne sayarken öğretmen saymanın sonucunu “beş tane kalem var”, “yedi tane fasulye var” şeklinde toplarsa, öğrenciler grupta son sayılan nesnenin saymanın sonucunu gösterdiğinin de farkına varmaya başlar. Öğretmen böylece sonuç çıkarıcı saymaya model olur. Daha sonra öğrenciler nesneleri saydıktan sonra öğretmen, “kaç tane” sorusunu sorarak öğrencilere sonuç çıkarıcı saymaya ilişkin (öğrenciler bağımsızlığa ulaşıncaya kadar) çok sayıda alıştırma yaptırmalıdır (Frye vd., 2013). Örneğin; öğrenci beş tane fasulyeyi dokunarak “1, 2, 3, 4, 5” sayar. Öğretmen “kaç tane fasulye” der. Öğrenci “5” der.
Matematik performansı düşük olan öğrenciler için nesne sayma, hem sayı sözcüklerini hatırlamayı hem de sırasıyla sayı sözcüklerini söylerken, bir nesneyi işaret etmeyi gerektirmesi nedeniyle oldukça zor bir beceridir

(Fuson, 1988; Frye vd., 2013; Wynn 1992). Bu nedenle öğrenciler, Şekil 2’de görüldüğü gibi ezbere sayma ya da nesnelere dokunma koordinasyonu ile ilgili hatalar yapabilirler (Reys vd., 2004).
Öğrencilerin ezbere sayma ve nesnelere dokunma koordinasyonuyla ilgili yaptıkları hataları önlemek için nesneleri bir yerden bir yere hareket ettirerek ya da bir kutudan diğerine koyarak sayma biçiminde alıştırmalar yapılabilir (Hudson ve Miller, 2006). Öğrenci koordinasyon hatası yaptığında öğretmen, öğrenciyi durdurmalı, yalnızca nesneye dokunduğunda saymasını söylemeli ve saymayı tekrar ettirmelidir. Eğer öğrenci, üst üste birçok kez ezbere sayma hatası yaparsa, ezbere sayma alıştırmalarına geri dönülmelidir (Stein vd., 1997).
Öğrenci nesne saymada ustalaşınca, iki grup nesneyi saymanın öğretimine geçilmelidir. İki grup nesne sayma öğrencileri toplamaya hazırlar. İki grup nesne saymada öğrencilerin en çok yaptıkları hata, öğrencinin birinci grup nesneyi saydıktan sonra ikinci grup nesneyi  birden başlayarak  saymasıdır. Öğrenci böyle bir hata yaptığında öğretmen, öğrenciyi durdurup tekrar sayarak model olmalı ve öğrenciden tekrar saymasını istemelidir (Stein vd., 1997).







Şekil 2. Nesne saymada yapılan hatalar (Reys vd., 2004).


Sıralı Sayma

Sıralı sayma, sayıların zaman ve mekânla ilişkilere göre sayılmasını içeren bir sayma becerisidir (Örneğin; birinci, ikinci, üçüncü…) (Hudson ve Miller, 2006). Yani nesnenin gruptaki pozisyonunu belirten sayma becerisidir (Reys vd., 2004). Sıralı sayma, uzun bölme işlemleri ve ondalık kesirler gibi pek çok ardışık matematik becerisinin öğrenilmesi için kritik öneme sahiptir (Hudson ve Miller, 2006)

1’den 30’a kadar ezbere ve 20’ye kadar nesne sayabilen öğrencilerle, sıralı sayma öğretimine geçilmelidir (Stein vd., 1997). Nesne saymanın öğretiminde olduğu gibi öğretmen, belli sırada olan nesnelere dokunup sıra numarasını söyleyerek öğretime başlamalı, öğretmenin nesnelere dokunduğu ve öğrencilerle birlikte saydığı alıştırmalar ile devam etmeli, sonra öğrencilerin kendi başına saydıkları oturumlara geçmelidir (Hudson ve Miller, 2006).
Öğretmenler, bir okul rutini içinde yer alan örnekleri, sıralı sayma alıştırmalarında rahatlıkla kullanabilirler (Örneğin; yapılan bir yarışta kimin birinci ya da ikinci olduğu, haftanın günlerini birinci gün, ikinci gün şeklinde sıralama, kitap sayfalarının tanımlanması). Ayrıca öğretmenler bir sıra halinde olan nesne ya da insan resimlerinden de yararlanabilirler (Hudson ve Miller, 2006).

Atlayarak Sayma

Atlayarak sayma, her bir sayıyı belli bir sayı katıyla sayma olarak adlandırılır (5,10,15,20… gibi). Atlayarak sayma, öğrencilerin bir sayının katlarını öğrenmelerine yardım eder, çarpmanın öğrenilmesine bir temel oluşturur ve bölme, saat okuma, kesirler gibi pek çok matematik becerisinde kullanılır (Hudson ve Miller, 2006).
Atlayarak saymada birçoğu aynı sayıdan oluşan sayma dizilerini ardı ardına öğretmek, öğrencilerin çok sayıda hata yapmalarına neden olmaktadır. 4’ün katlarını saymaya başlayan öğrenci, 4, 8 şeklinde başlayıp 8’in katlarıyla saymaya devam edebilir. Bu yüzden atlayarak sayma dizilerinin sırası 10’arlı sayma ile başlayıp 2’şerli, 5’erli, 9’arlı, 4’erli, 3’erli, 8’erli, 7’şerli, ve 6’şarlı şeklinde devam ederse, öğrencilerin hata yapma ihtimalleri azalmış olur (Stein vd., 1997).
Öğretmen, diğer sayma becerilerinin öğretiminde olduğu gibi atlayarak saymaya önce model olarak başlamalı sonra rehberlik etmeli en son olarak öğrencilere kendi başlarına pek çok sayıda sayma alıştırmaları yaptırmalıdır (Hudson ve Miller, 2006). Öğretmen bir dizideki sayıya model olurken, iki sayı arasında bir saniyeden biraz az boşluk bırakmalıdır. Rehberlik ederken ise özellikle serinin zor bölümlerinde yüksek ses kullanmalıdır. Yüksek ses kullanmanın amacı, bütün öğrencilerin doğru tepkiyi duymasını sağlamaktır. Seriyi daha kolay öğrenmeyi sağlamak için öğretmen tarafından canlı bir ritim (ayağını yere vurma, el çırpma gibi) belirlenmelidir (Stein vd., 1997).
Matematik performansı düşük olan öğrenciler için atlayarak sayma öğretimine, sayma serisinin ilk üç sayısını tanıtarak başlanabilir ve tüm seri, başarısı düşük öğrenciye birkaç günde, başarısı yüksek öğrencilere ise bir defada sunulabilir (Stein vd., 1997).
Öğrencilerin, bir sayının katlarını sayarken yaptıkları hataları düzeltmek için ezbere sayma hatalarında olduğu gibi öğretmen öğrenciyi durdurmalı, iki sayı yanlış söylenen kısımdan önce başlayarak, yanlış sayıdan bir sonraki sayıya kadar sayarak öğrenciye model olmalı, rehberlik etmeli ve tekrar saydırmalıdır (Stein vd., 1997).

Sonuç

Bu çalışmada, sayma becerilerinin öğretiminde sistematik ipuçlarının nasıl verileceği, öğrenciler hata yaptığında nasıl düzetme yapılacağı ve sayma becerilerini hangi sırayla öğretileceğine ilişkin pratik önerilerde bulunulmuştur. Bu öneriler doğrultusunda öğretmenler, öğrencilerinde sayı edinimini tam anlamıyla sağlamak ve ileri matematik becerilerine bir temel oluşturmak için bu becerilere gereken önemi vermeli ve bilimsel araştırmalar sonucunda etkililikleri kanıtlanmış öğretim yöntemlerini (açık anlatım, yanlışsız öğretim, gömülü öğretim gibi) tercih etmelidir. Ayrıca matematik, kolaydan zora sıranın oldukça belirgin olduğu bir disiplin alanıdır. Bir önceki öğrenilen beceri, bir sonraki öğrenilecek olan becerinin ön koşulu olma özelliği (geriye doğru sayamayan bir öğrenci çıkarma yapmayı öğrenemez) gösterir. Bu nedenle matematikte edinilen becerilerin öğrenciler tarafından akıcı bir şekilde sergilenmesi ve kalıcı hale gelmesi oldukça önemlidir. Öğretmenler, öğrencilere sayma becerilerini kazandırırken sadece edinime yönelik öğretim oturumları değil, akıcılık ve kalıcılığı sağlamak içinde öğretim oturumları planlamalıdır.

    KAYNAK : Sayma Becerilerinin Öğretimi

Hiç yorum yok:

Yorum Gönder